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Introduction 

In this lab, we designed controllers in order to control the position and angular speed of the 

Qnet DC Motor. In this lab, we observed the output and performance of the system when PI and 

PD controllers are in use. We designed controllers to control the position and speed of the Qnet 

DC Motor to track a square wave with certain design specifications. 

 

Question 1 

a) To define the transfer function, the following code can be used: 

 
b) This can be used the following Matlab code:  

 
c) 

 
 

% Define the transfer functions here 

gain = 28.5; 

tau = 0.16; 

 

H = gain/(tau*s + 1); 

G = (1/s)*(gain)/(tau*s+1); 

 

 

%Define the time here 

T = 5;       % Simulation duration 

dt = 0.01;    % Simulation step time 

time = 0:dt:T; 

PI controller for H(s) 
K = 0.0366 + 0.686 / s 
Kp = 0.0366 
Ki = 0.686 

 
PD controller for G(s) 
K = 0.686 + 0.0366 * s 
Kp = 0.686 
Ki = 0.0366 

 

 
    1.042 s + 19.55 
Hcl = ------------------------------------ 
         0.16 s^2 + 2.042 s + 19.55 

 
    1.042 s + 19.55 
Gcl = ------------------------------------ 
         0.16 s^2 + 2.042 s + 19.55 
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d) Simulation of the output and input 

 
Figure 1: Simulation of system with Kp = 0.0366, Ki = 0.686 for ω and Kp = 0.686, Kd = 0.0366 for θ 

 

For ω(s), the 5% settling time of the system can be observed from the graph to be around 0.40 

seconds, the overshoot is 6.92, which is 9.23%, and the steady state error is roughly 0. For the 

PI controller, Kp = 0.0366, Ki = 0.686. The output of the simulation can be seen below: 

 

For θ(s), the 5% settling time of the system can be observed from the graph to be around 0.47 

seconds, the overshoot is 49.8, which is 27.67%, and the steady state error is roughly 0. For the 

PI controller, Kp = 0.686, Kd = 0.0366. 

 

Simulation of the output and input, after tuning the controller to meet Zero steady state-error, 

5%-Settling time of 0.25 s and Overshoot less than 10%. 
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Figure 2: Kp = 0.07, Ki = 0.686 for ω, Kp = 0.686, Kd = 0.1 for θ 

 

For ω(s), the 5% settling time of the system can be observed from the graph to be around 0.25 

seconds, the overshoot is 2.05, which is 2.73%, and the steady state error is roughly 0. For the 

PI controller, Kp = 0.07, Ki = 0.686. The output of the simulation can be seen below: 

 

For θ(s), the 5% settling time of the system can be observed from the graph to be around 0.25 

seconds, the overshoot is 2, which is 1.11%, and the steady state error is roughly 0. For the PI 

controller, Kp = 0.686, Kd = 0.1. 

 

Question 2 

1) The 5% settling time of the system can be observed from the graph shown below to be 

around 0.34 seconds, the overshoot is 10.26, which is 13.67%, and the steady state 

error is roughly 0.04. The value of Kp = 0.0366, Ki = 0.686. The output of the QNet DC 

Motor can be seen below:  
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Figure 3: Motor Output Kp = 0.0366, Ki = 0.686 

 

2) The 5% settling time of the system can be observed from the graph shown below to be 

around 0.24 seconds, the overshoot is 4.56, which is 6.08%, and the steady state error 

is 0. The values of the controller are Kp = 0.7 and Ki = 0.06. The output is shown below: 

 
Figure 4:  Motor Output Kp = 0.7, Ki = 0.6 

 

 

3) We partially have saturation at around time = 0, however throughout the regular cycling 

process of the system, there is no saturation and the motor input voltage ranges from 

+5V to -1.8V.  
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Question 3 

1) Using the controller gains found in Question 1, the output is observed as follows: 

 
Figure 5: Motor Output Kp = 0.07, Ki = 0.686 for ω, Kp = 0.686, Kd = 0.0366 for θ 

2) Beginning from the values derived in Question 1, namely, Kp = 0.686, Ki = 0.0366 we 

tune the controller system to the values of Kp = 0.9, Kd = 0.0366. The result is shown 

below: 

 
Figure 6: Motor Output Kp = 0.686, Ki = 0.0366 for ω, Kp = 0.9, Kd = 0.0366 for θ 

The value of the system overshoot is 32, or 17%. The rise time is 0.27 seconds and the 

5% settling time is infinite as the system never settles within 5% of the input. We were 

unable to meet the specifications during the lab time due to shortage of time.   
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Question 4 

1) The equation to calculate the number of cycles the motor must make is given by:  

 
As we want the motor to travel 0.4m forward, the number of cycles it must complete is 

given by: (0.4)/(𝑝𝑖 ∗  0.05)  =  2.546cycles.  

 

This number must be multiplied by 2*pi to get the desired value in radians, this can be 

calculated to be 16 radians to move the motor forward 0.4m. To move the motor in 

reverse, the value will be calculated using the same method to be 8 radians.   

 

The designed PD controller is Kp = 0.9, Kd = 0.05. The output is shown below:  

 
Figure 7: Ouput for Kp = 0.9, Kd = 0.05 

 

2) The physical interpretation of the rise time is a measure of how quickly the motor will be 

able to respond to stimulus. The settling time would be the time required for the motor 

speed to stabilize to within a desired settling band. The overshoot is the maximum 

amount of system deviates from the desired input signal, in our case, it is measured as 

the amount which the motor goes beyond the desired signal and must correct.  

 

3) The maximum distance the car can travel will be dictated by the maximum speed that 

the car can travel at a given time. By increasing our input signal to a high number, we 

can determine what is the distance the motor can travel in a given time frame, in our 

case, the distance it can travel in one second. This result is shown in the graph below:  
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Figure 8: Kp = 1000, Kd = 0.05 

 

As can be seen in the graph seen above, the maximum rotation the motor is able to do 

in one second is 115.8 degrees or 0.0527 m.  

 

 

Conclusion 

The purpose of this laboratory was to tune given controllers, PI and PD, to meet certain design 

specifications for the system, in terms of rise time, settling time overshoot. We also got to 

understand the physical interpretation of rise time, settling time and overshoot in a said 

particular system. We also learned that the output of a system would become saturated as we 

increased the input to the system in a practical scenario, in contrast to a theoretical one where 

output would just be the product of the transfer function and the input with no bound for 

saturation. The end goal was to design controllers to control the position and speed of the Qnet 

DC Motor to track a square wave with certain design specifications and at the same time 

understand its saturation limit. 

 

 

 

Appendix:  

% ------------------------------------------------------------------

------% 

% title    : Lab 6                                                        

% 

% subtitle : Speed and Position Control of Qnet DC Motor                               

% 

% date     : Week of November 20, 2017                                    

% 

% ------------------------------------------------------------------

------% 
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%% Initialization (can be called only once) 

% Clear all input and output from the Command Window 

clc, 

 

% Change the default figure window style to docked 

set(0,'DefaultFigureWindowStyle', 'docked') 

 

% We start by adding `Interface` sub-directory to Matlab's search 

path. 

addpath('Interface'); 

 

% Create an object handle to interface with Qnet DC Motor 

Motor = QnetDCMotor(); 

 

s = tf('s') 

 

%% PI and PD Controllers Design in MATLAB 

 

 

%  

% % Define the transfer functions here 

% gain = 28.5; 

% tau = 0.16; 

 

H = gain/(tau*s + 1); 

G = (1/s)*(gain)/(tau*s+1); 

%Define the time here 

T = 5;       % Simulation duration 

dt = 0.01;    % Simulation step time 

time = 0:dt:T; 

 

%Complete the reference signals here 

w_ref = 75*(time<1) + 25*(time>=1 & time<2) + 75*(time>=2 & time<3) 

+ 25*(time>=3 & time<4) + 75*(time>=4 & time<5) 

p_ref = 180*(time<1) + -180*(time>=1 & time<2) + 180*(time>=2 & 

time<3) + -180*(time>=3 & time<4) + 180*(time>=4 & time<5) 

 

% Plot results here 

figure(1); clf; 

subplot(2,1,1) 

hold on 

plot(time, w_ref, '--k') 

ylim([0 1.25*max(w_ref)]) 

xlim([0 T]) 

legend('Reference \omega (rad/s)') 

grid on 
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subplot(2,1,2) 

hold on 

plot(time, p_ref, '--r') 

ylim([1.25*min(p_ref) 1.25*max(p_ref)]) 

xlim([0 T]) 

legend('Reference \theta (degree)') 

grid on 

  

% Design PI and PD controllers for speed and position control here 

% C_PI = pidtune(H,'PI'); 

% C_PD = pidtune(G,'PD'); 

 

% Change the values of the gains in controllers here 

C_PI = pid(0.07,0.686,0); 

C_PD = pid(0.686,0,0.1); 

 

% Find the closed loop controlled transfer function here 

Ho = series(C_PI,H); 

Hcl = feedback(Ho,1); 

 

Go = series(C_PD,G); 

Gcl = feedback(Go,1); 

 

%Find the output here 

w_out = lsim(Hcl, w_ref, time); 

p_out = lsim(Gcl, p_ref, time); 

 

% % Plot results 

figure(3); clf; 

subplot(2,1,1) 

hold on 

plot(time, w_out, '--k') 

hold on 

plot(time,w_ref,'b') 

ylim([0 1.25*max(w_out)]) 

xlim([0 T]) 

legend('Output \omega (rad/s)') 

grid on 

subplot(2,1,2) 

hold on 

plot(time, p_out, '--r') 

hold on 

plot(time,p_ref,'b') 

ylim([1.25*min(p_out) 1.25*max(p_out)]) 

xlim([0 T]) 

legend('Output \theta (degree)') 

grid on 
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%% PI Controller for Qnet DC Motor Speed Control 

 

Kp = 0.06; 

Ki = 0.7; 

 

% Drive the Qnet DC Motor 

 

w_error = zeros(size(time)); %Initialize an error array. 

 

Motor.reset();  % reset the motor internal variable 

 

for n = 1:length(time) 

 t_ = time(n); 

 w_ = Motor.velocity(t_); 

 w_error(n) = w_ref(n)-w_; 

 u_ = Kp* w_error(n) + Ki*sum(w_error)*dt; 

 Motor.drive(u_, t_, dt); 

end 

Motor.off(); 

 

% Get results of driving Qnet DC Motor 

 

w_motor = Motor.velocity(0, T); 

u = Motor.voltage(0, T); 

 

% % Plot results 

figure(3); clf; 

subplot(2,1,1) 

hold on 

plot(time, w_motor, '--k') 

hold on 

plot(time,w_ref,'b') 

ylim([0 1.25*max(w_motor)]) 

xlim([0 T]) 

legend('Motor output \omega (rad/s)') 

grid on 

subplot(2,1,2) 

hold on 

plot(time, u, '--r') 

ylim([1.25*min(u) 1.25*max(u)]) 

xlim([0 T]) 

legend('Motor input voltage (V)') 

grid on 

 

%% PD Controller for Qnet DC Motor Position control 
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Kp = 0.9; 

Kd = 0.0366; 

 

% % Drive the Qnet DC Motor 

p_error = zeros(size(time)); %Initialize an array for error. 

 

p_ref = p_ref*pi/180; %change the reference signal from degree to 

radian 

 

Motor.reset();  % reset the motor internal variable 

for n = 1:length(time)  % drive the control signal as well as the 

output of the system 

 t_ = time(n); 

 p_ = Motor.angle(t_); 

 p_error(n) = p_ref(n)-p_; 

 if(n==1) 

     u_ = Kp * p_error(1) + Kd/dt * (p_error(1)-pi); 

 else 

     u_ = Kp * p_error(n) + Kd/dt * (p_error(n)-p_error(n-1)); 

 end 

  

 Motor.drive(u_, t_, dt); 

end 

Motor.off(); 

 

% % Get results of driving Qnet DC Motor 

 

p_motor = Motor.angle(0, T); 

u = Motor.voltage(0, T); 

 

p_motor = p_motor*180/pi; % change the units again from radian to 

degree. 

p_ref = p_ref*180/pi; 

 

 

% Plot results 

figure(4); clf; 

subplot(2,1,1) 

hold on 

plot(time, p_motor, '--k') 

hold on 

plot(time,p_ref,'b') 

ylim([1.25*min(p_motor) 1.25*max(p_motor)]) 

xlim([0 T]) 

legend('Motor position (degree)') 

grid on 

subplot(2,1,2) 
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hold on 

plot(time, u, '--r') 

ylim([1.25*min(u) 1.25*max(u)]) 

xlim([0 T]) 

legend('Motor input voltage (V)') 

grid on 

 

%% PD Position Control- Question 4 

a = 10*2*pi*(0.4/(pi*0.05)); 

b = 0; 

%  

p_ref = a*(time<1) + b*(time>=1 & time<2)+a*(time>=2 & time<3)... 

   +b*(time>=3 & time<4)+a*(time>=4 & time<5)+b*(time>=5); 

%  

Kp = 0.9; 

Kd = 0.05; 

 

% Drive the Qnet DC Motor 

p_error = zeros(size(time)); %Define an array for error 

 

Motor.reset();  % reset the motor internal variable 

for n = 1:length(time) 

    t_ = time(n); 

    p_ = Motor.angle(t_); 

    p_error(n) = p_ref(n)-p_; 

    if(n==1) 

        u_ = Kp * p_error(1) + Kd/dt * (p_error(1)-pi); 

    else 

        u_ = Kp * p_error(n) + Kd/dt * (p_error(n)-p_error(n-1)); 

    end 

    Motor.drive(u_, t_, dt); 

end 

Motor.off(); 

 

% % Get results of driving Qnet DC Motor 

p_motor = Motor.angle(0, T); 

u = Motor.voltage(0, T); 

 

% Plot results 

figure(5); clf; 

subplot(2,1,1) 

hold on 

plot(time, p_motor, '--k') 

hold on 

plot(time,p_ref,'b') 

ylim([1.25*min(p_motor) 1.25*max(p_motor)]) 

xlim([0 T]) 
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legend('Motor position (degree)') 

grid on 

subplot(2,1,2) 

hold on 

plot(time, u, '--r') 

ylim([1.25*min(u) 1.25*max(u)]) 

xlim([0 T]) 

legend('Motor input voltage (V)') 

grid on 

 


