
Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

Introduction

In this lab, we designed controllers in order to control the position and angular speed of the

Qnet DC Motor. In this lab, we observed the output and performance of the system when PI and

PD controllers are in use. We designed controllers to control the position and speed of the Qnet

DC Motor to track a square wave with certain design specifications.

Question 1

a) To define the transfer function, the following code can be used:

b) This can be used the following Matlab code:

c)

% Define the transfer functions here

gain = 28.5;

tau = 0.16;

H = gain/(tau*s + 1);

G = (1/s)*(gain)/(tau*s+1);

%Define the time here

T = 5; % Simulation duration

dt = 0.01; % Simulation step time

time = 0:dt:T;

PI controller for H(s)
K = 0.0366 + 0.686 / s
Kp = 0.0366
Ki = 0.686

PD controller for G(s)
K = 0.686 + 0.0366 * s
Kp = 0.686
Ki = 0.0366

 1.042 s + 19.55
Hcl = ------------------------------------
 0.16 s^2 + 2.042 s + 19.55

 1.042 s + 19.55
Gcl = ------------------------------------
 0.16 s^2 + 2.042 s + 19.55

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

d) Simulation of the output and input

Figure 1: Simulation of system with Kp = 0.0366, Ki = 0.686 for ω and Kp = 0.686, Kd = 0.0366 for θ

For ω(s), the 5% settling time of the system can be observed from the graph to be around 0.40

seconds, the overshoot is 6.92, which is 9.23%, and the steady state error is roughly 0. For the

PI controller, Kp = 0.0366, Ki = 0.686. The output of the simulation can be seen below:

For θ(s), the 5% settling time of the system can be observed from the graph to be around 0.47

seconds, the overshoot is 49.8, which is 27.67%, and the steady state error is roughly 0. For the

PI controller, Kp = 0.686, Kd = 0.0366.

Simulation of the output and input, after tuning the controller to meet Zero steady state-error,

5%-Settling time of 0.25 s and Overshoot less than 10%.

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

Figure 2: Kp = 0.07, Ki = 0.686 for ω, Kp = 0.686, Kd = 0.1 for θ

For ω(s), the 5% settling time of the system can be observed from the graph to be around 0.25

seconds, the overshoot is 2.05, which is 2.73%, and the steady state error is roughly 0. For the

PI controller, Kp = 0.07, Ki = 0.686. The output of the simulation can be seen below:

For θ(s), the 5% settling time of the system can be observed from the graph to be around 0.25

seconds, the overshoot is 2, which is 1.11%, and the steady state error is roughly 0. For the PI

controller, Kp = 0.686, Kd = 0.1.

Question 2

1) The 5% settling time of the system can be observed from the graph shown below to be

around 0.34 seconds, the overshoot is 10.26, which is 13.67%, and the steady state

error is roughly 0.04. The value of Kp = 0.0366, Ki = 0.686. The output of the QNet DC

Motor can be seen below:

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

Figure 3: Motor Output Kp = 0.0366, Ki = 0.686

2) The 5% settling time of the system can be observed from the graph shown below to be

around 0.24 seconds, the overshoot is 4.56, which is 6.08%, and the steady state error

is 0. The values of the controller are Kp = 0.7 and Ki = 0.06. The output is shown below:

Figure 4: Motor Output Kp = 0.7, Ki = 0.6

3) We partially have saturation at around time = 0, however throughout the regular cycling

process of the system, there is no saturation and the motor input voltage ranges from

+5V to -1.8V.

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

Question 3

1) Using the controller gains found in Question 1, the output is observed as follows:

Figure 5: Motor Output Kp = 0.07, Ki = 0.686 for ω, Kp = 0.686, Kd = 0.0366 for θ

2) Beginning from the values derived in Question 1, namely, Kp = 0.686, Ki = 0.0366 we

tune the controller system to the values of Kp = 0.9, Kd = 0.0366. The result is shown

below:

Figure 6: Motor Output Kp = 0.686, Ki = 0.0366 for ω, Kp = 0.9, Kd = 0.0366 for θ

The value of the system overshoot is 32, or 17%. The rise time is 0.27 seconds and the

5% settling time is infinite as the system never settles within 5% of the input. We were

unable to meet the specifications during the lab time due to shortage of time.

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

Question 4

1) The equation to calculate the number of cycles the motor must make is given by:

As we want the motor to travel 0.4m forward, the number of cycles it must complete is

given by: (0.4)/(𝑝𝑖 ∗ 0.05) = 2.546cycles.

This number must be multiplied by 2*pi to get the desired value in radians, this can be

calculated to be 16 radians to move the motor forward 0.4m. To move the motor in

reverse, the value will be calculated using the same method to be 8 radians.

The designed PD controller is Kp = 0.9, Kd = 0.05. The output is shown below:

Figure 7: Ouput for Kp = 0.9, Kd = 0.05

2) The physical interpretation of the rise time is a measure of how quickly the motor will be

able to respond to stimulus. The settling time would be the time required for the motor

speed to stabilize to within a desired settling band. The overshoot is the maximum

amount of system deviates from the desired input signal, in our case, it is measured as

the amount which the motor goes beyond the desired signal and must correct.

3) The maximum distance the car can travel will be dictated by the maximum speed that

the car can travel at a given time. By increasing our input signal to a high number, we

can determine what is the distance the motor can travel in a given time frame, in our

case, the distance it can travel in one second. This result is shown in the graph below:

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

Figure 8: Kp = 1000, Kd = 0.05

As can be seen in the graph seen above, the maximum rotation the motor is able to do

in one second is 115.8 degrees or 0.0527 m.

Conclusion

The purpose of this laboratory was to tune given controllers, PI and PD, to meet certain design

specifications for the system, in terms of rise time, settling time overshoot. We also got to

understand the physical interpretation of rise time, settling time and overshoot in a said

particular system. We also learned that the output of a system would become saturated as we

increased the input to the system in a practical scenario, in contrast to a theoretical one where

output would just be the product of the transfer function and the input with no bound for

saturation. The end goal was to design controllers to control the position and speed of the Qnet

DC Motor to track a square wave with certain design specifications and at the same time

understand its saturation limit.

Appendix:

% --

------%

% title : Lab 6

%

% subtitle : Speed and Position Control of Qnet DC Motor

%

% date : Week of November 20, 2017

%

% --

------%

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

%% Initialization (can be called only once)

% Clear all input and output from the Command Window

clc,

% Change the default figure window style to docked

set(0,'DefaultFigureWindowStyle', 'docked')

% We start by adding `Interface` sub-directory to Matlab's search

path.

addpath('Interface');

% Create an object handle to interface with Qnet DC Motor

Motor = QnetDCMotor();

s = tf('s')

%% PI and PD Controllers Design in MATLAB

%

% % Define the transfer functions here

% gain = 28.5;

% tau = 0.16;

H = gain/(tau*s + 1);

G = (1/s)*(gain)/(tau*s+1);

%Define the time here

T = 5; % Simulation duration

dt = 0.01; % Simulation step time

time = 0:dt:T;

%Complete the reference signals here

w_ref = 75*(time<1) + 25*(time>=1 & time<2) + 75*(time>=2 & time<3)

+ 25*(time>=3 & time<4) + 75*(time>=4 & time<5)

p_ref = 180*(time<1) + -180*(time>=1 & time<2) + 180*(time>=2 &

time<3) + -180*(time>=3 & time<4) + 180*(time>=4 & time<5)

% Plot results here

figure(1); clf;

subplot(2,1,1)

hold on

plot(time, w_ref, '--k')

ylim([0 1.25*max(w_ref)])

xlim([0 T])

legend('Reference \omega (rad/s)')

grid on

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

subplot(2,1,2)

hold on

plot(time, p_ref, '--r')

ylim([1.25*min(p_ref) 1.25*max(p_ref)])

xlim([0 T])

legend('Reference \theta (degree)')

grid on

% Design PI and PD controllers for speed and position control here

% C_PI = pidtune(H,'PI');

% C_PD = pidtune(G,'PD');

% Change the values of the gains in controllers here

C_PI = pid(0.07,0.686,0);

C_PD = pid(0.686,0,0.1);

% Find the closed loop controlled transfer function here

Ho = series(C_PI,H);

Hcl = feedback(Ho,1);

Go = series(C_PD,G);

Gcl = feedback(Go,1);

%Find the output here

w_out = lsim(Hcl, w_ref, time);

p_out = lsim(Gcl, p_ref, time);

% % Plot results

figure(3); clf;

subplot(2,1,1)

hold on

plot(time, w_out, '--k')

hold on

plot(time,w_ref,'b')

ylim([0 1.25*max(w_out)])

xlim([0 T])

legend('Output \omega (rad/s)')

grid on

subplot(2,1,2)

hold on

plot(time, p_out, '--r')

hold on

plot(time,p_ref,'b')

ylim([1.25*min(p_out) 1.25*max(p_out)])

xlim([0 T])

legend('Output \theta (degree)')

grid on

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

%% PI Controller for Qnet DC Motor Speed Control

Kp = 0.06;

Ki = 0.7;

% Drive the Qnet DC Motor

w_error = zeros(size(time)); %Initialize an error array.

Motor.reset(); % reset the motor internal variable

for n = 1:length(time)

 t_ = time(n);

 w_ = Motor.velocity(t_);

 w_error(n) = w_ref(n)-w_;

 u_ = Kp* w_error(n) + Ki*sum(w_error)*dt;

 Motor.drive(u_, t_, dt);

end

Motor.off();

% Get results of driving Qnet DC Motor

w_motor = Motor.velocity(0, T);

u = Motor.voltage(0, T);

% % Plot results

figure(3); clf;

subplot(2,1,1)

hold on

plot(time, w_motor, '--k')

hold on

plot(time,w_ref,'b')

ylim([0 1.25*max(w_motor)])

xlim([0 T])

legend('Motor output \omega (rad/s)')

grid on

subplot(2,1,2)

hold on

plot(time, u, '--r')

ylim([1.25*min(u) 1.25*max(u)])

xlim([0 T])

legend('Motor input voltage (V)')

grid on

%% PD Controller for Qnet DC Motor Position control

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

Kp = 0.9;

Kd = 0.0366;

% % Drive the Qnet DC Motor

p_error = zeros(size(time)); %Initialize an array for error.

p_ref = p_ref*pi/180; %change the reference signal from degree to

radian

Motor.reset(); % reset the motor internal variable

for n = 1:length(time) % drive the control signal as well as the

output of the system

 t_ = time(n);

 p_ = Motor.angle(t_);

 p_error(n) = p_ref(n)-p_;

 if(n==1)

 u_ = Kp * p_error(1) + Kd/dt * (p_error(1)-pi);

 else

 u_ = Kp * p_error(n) + Kd/dt * (p_error(n)-p_error(n-1));

 end

 Motor.drive(u_, t_, dt);

end

Motor.off();

% % Get results of driving Qnet DC Motor

p_motor = Motor.angle(0, T);

u = Motor.voltage(0, T);

p_motor = p_motor*180/pi; % change the units again from radian to

degree.

p_ref = p_ref*180/pi;

% Plot results

figure(4); clf;

subplot(2,1,1)

hold on

plot(time, p_motor, '--k')

hold on

plot(time,p_ref,'b')

ylim([1.25*min(p_motor) 1.25*max(p_motor)])

xlim([0 T])

legend('Motor position (degree)')

grid on

subplot(2,1,2)

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

hold on

plot(time, u, '--r')

ylim([1.25*min(u) 1.25*max(u)])

xlim([0 T])

legend('Motor input voltage (V)')

grid on

%% PD Position Control- Question 4

a = 10*2*pi*(0.4/(pi*0.05));

b = 0;

%

p_ref = a*(time<1) + b*(time>=1 & time<2)+a*(time>=2 & time<3)...

 +b*(time>=3 & time<4)+a*(time>=4 & time<5)+b*(time>=5);

%

Kp = 0.9;

Kd = 0.05;

% Drive the Qnet DC Motor

p_error = zeros(size(time)); %Define an array for error

Motor.reset(); % reset the motor internal variable

for n = 1:length(time)

 t_ = time(n);

 p_ = Motor.angle(t_);

 p_error(n) = p_ref(n)-p_;

 if(n==1)

 u_ = Kp * p_error(1) + Kd/dt * (p_error(1)-pi);

 else

 u_ = Kp * p_error(n) + Kd/dt * (p_error(n)-p_error(n-1));

 end

 Motor.drive(u_, t_, dt);

end

Motor.off();

% % Get results of driving Qnet DC Motor

p_motor = Motor.angle(0, T);

u = Motor.voltage(0, T);

% Plot results

figure(5); clf;

subplot(2,1,1)

hold on

plot(time, p_motor, '--k')

hold on

plot(time,p_ref,'b')

ylim([1.25*min(p_motor) 1.25*max(p_motor)])

xlim([0 T])

Ali Shobeiri - 260665549

Ismail Faruk - 260663521

ECSE 307 - Lab 6

legend('Motor position (degree)')

grid on

subplot(2,1,2)

hold on

plot(time, u, '--r')

ylim([1.25*min(u) 1.25*max(u)])

xlim([0 T])

legend('Motor input voltage (V)')

grid on

